17:38 にページが自動更新されます。
微分(2)
\( u, v \) が \( x \) の関数で微分可能であり,\( k, a \) が定数とすると
\( \left( k u \right)' = k u' \)
\( \left( u \pm v\right)' = u' \pm v' \)
\( \left( u v\right)' = u' v + u v' \)
\( \Large \left( \frac{u}{v} \right)' \normalsize = \left( u v^{-1}\right)' = u' v^{-1} + u \left( v^{-1} \right)'\)
\( = u' v^{-1} + u \times -v^{-2} \times v'\)
\( = \Large \frac{u' v - u v'}{v^2} \)
選択肢
(1) | \(x \cos{\left(x \right)} + \sin{\left(x \right)}\) | (2) | \(\frac{1}{\sin^{2}{\left(x \right)}}\) | (3) | \(\cos{\left(x \right)}\) |
(4) | \(6 x^{5} - 5 x^{4} - 4 x^{3} + 3 x^{2} - 4 x + 2\) | (5) | \(a b x^{b - 1}\) | (6) | \(\frac{2}{\cosh^{2}{\left(x \right)}}\) |
(7) | \(\frac{\tan{\left(x \right)}}{\cos^{2}{\left(x \right)}}\) | (8) | \(- \tan{\left(x \right)}\) | (9) | \(\frac{1}{\cos^{2}{\left(x \right)}}\) |
(10) | \(\tanh{\left(x \right)}\) | (11) | \(\frac{1}{x \log{\left(a \right)}}\) | (12) | \(\frac{1}{a x}\) |
(13) | \(- \frac{1}{\sin{\left(x \right)} + 1}\) | (14) | \(- \cos{\left(x \right)}\) | (15) | \(\sin{\left(x \right)}\) |
(16) | \(x e^{x - 1}\) | (17) | \(a e^{x}\) | (18) | \(\frac{\tanh{\left(x \right)}}{\cosh^{2}{\left(x \right)}}\) |
(19) | \(\frac{1}{\cosh^{2}{\left(x \right)}}\) | (20) | \(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\) | (21) | \(a\) |
(22) | \(3 x^{2} + 12 x + 7\) | (23) | \(- \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} + \log{\left(\cos{\left(x \right)} \right)}\) | (24) | \(\frac{1}{x}\) |